Effect size web sites:

It’s the Effect Size, Stupid by Robert Coe: **This is the best site I found!**

http://www.leeds.ac.uk/educol/documents/00002182.htm

Texas Education Agency – Best Practices Warehouse

http://www.tea.state.tx.us/Best_Practice_Standards/How_To_Interpret_Effect_Sizes.aspx

\[
\text{Effect Size} = \frac{\bar{X}_{\text{Exp. group}} - \bar{X}_{\text{Control group}}}{S_{\text{Control group}}} \times
\]

The “strength” of any experiment is dependent on the sample size, n. Effect size helps measure the “strength” of the result, but even this is dependent of the context of the experiment. In some contexts, a small difference in the means of two groups could have significant results.

The effect size is, essentially, a “Z score” in that it tells you how many standard deviations an average subject (person or thing) in the experimental group is above an average subject (person or thing) in the control group. If the effect size is 0.7, then the average subject in the experimental group is 0.7 standard deviations above the average subject in the control group.

As stated above, the best web site I found for this topic was

http://www.leeds.ac.uk/educol/documents/00002182.htm I would encourage you to go to this site.

* Cohen’s d = \(\frac{t^2}{\sqrt{d.f.}} \) using the t –value from your t-test

\[
\text{Cohen’s effect size} = \frac{t^2}{\sqrt{t^2 + d.f.}}.
\]